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In this paper, we generalize the nonlocal discrete transparent boundary condition
introduced by F. Schmidt and P. Deuflhard (1995,Comput. Math. Appl.29, 53–76)
and by F. Schmidt and D. Yevick (1997,J. Comput. Phys.134, 96–107) to propa-
gation methods based on arbitrary Pad´e approximations of the two-dimensional one-
way Helmholtz equation. Our approach leads to a recursive formula for the coef-
ficients appearing in the nonlocal condition, which then yields an unconditionally
stable propagation method. c© 2001 Academic Press
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1. INTRODUCTION

Scalar wave propagation in two dimensions is generally modeled by the Helmholtz
equation

uzz+ uxx + k2u = 0 (1)

over the entireR2 domain, where the wavenumberk = k(x, z) is generally position
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dependent. In many physical situations, we can further distinguish a principal propagation
direction, here taken to be thez-direction, and a transversex-direction. In the particular
case of a position-independent wavenumber, the operator∂2

z + ∂2
x + k2 can be explicitly

factorized, leading to the exact one-way Helmholtz equation

∂zu = ik

√
1+ 1

k2
∂2

x u. (2)

In the above expression, the formal square root operator is a pseudo-differential operator,
which can be given a precise meaning in the Fourier representation. The associated initial
value problem must generally be solved on the domainÄ = R×R+0 . This requires that
the pseudo-differential square root operator be evaluated in a basis of eigenfunctions of its
operand, which are free-space Fourier components ifk is x-independent.

While (2) is difficult to solve exactly for spatially varyingk(x), it provides a foundation
for numerous beam propagation methods. Perhaps the most straightforward of these are the
split-step fast Fourier transform methods, in which the square root operator is computed
directly in Fourier space. Alternatively, approximations such as the fixed-point iteration or
rational approximations to the square root operator

√
1+ X can be applied to transform

(2) into more easily handled differential equations. These approximations can be formally
written as

∂zu = ik

(
1− b′0∂

2
x

)(
1− b′1∂

2
x

) · · · (1− b′m∂
2
x

)(
1− b0∂2

x

)(
1− b1∂2

x

) · · · (1− bn∂2
x

) u (3)

with complex coefficientsb′0, . . . ,b
′
m andb0, . . . ,bn. The approximation quality and the

well-posedness of this formal equation have been extensively examined in [2, 16]. Addi-
tionally, the non-commutativity of the factors in (3) in the case of non-constant coefficients
b′0, . . . ,b

′
m andb0, . . . ,bn on the computational domain is the source of several theoreti-

cal issues which are not discussed here. Rather, we adopt the usual technique of “frozen
coefficients,” in which the functions are considered to be constant in deriving the rational
approximation [2].

From a physical perspective, although originally developed in computational underwater
acoustics, propagation methods based on (3) have proved critically important in many other
contexts, as evident from some representative references, e.g. [4, 5, 7, 9, 17]. A high-order
Padé approximation to the Helmholtz propagator ensures that all widely divergent beams are
described to great accuracy. At the same time, replacing the Pad´e approximant by its partial
fraction representation leads to an equivalent formalism that is ideally suited to parallel
processing.

In the following sections, we will accordingly investigate the discrete solution to the
following problems:

1. Let the coefficientsb′0, . . . ,b
′
m andb0, . . . ,bn be piecewise continuous real functions

on the bounded computational domainÄ := [x−, x+] × [0, zmax] and real constants outside
the computational domain.

2. Next, consider (3) on the unboundedx–z-domainR× [0, zmax] with the initial con-
dition u(x, 0) = u0(x) compactly supported in the interval[x−, x+] ⊂ R such that the
asymptotic boundary condition lim|x|→∞ u(x, z) = 0 holds for all 0≤ z≤ zmax.

3. Determine the solutionu(x) on the bounded computational domainÄ that agrees
exactly with the unbounded result, restricted toÄ.
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The goal of our paper is thus to construct transparent boundary conditions for arbitrary
higher order evolution equations of the type (3) that ensure the realization of the third point
above. Such problems occur frequently in various physical contexts. For example, elec-
tromagnetic field propagation due to radiating sources in the troposphere is distinguished
by the presence of three regions: (1) The homogeneous region of the troposphere, corre-
sponding to our left exterior domain, (2) the interior, inhomogeneous atmospheric region,
and (3) the ground. The boundary condition between regions (2) and (3) is assumed to be
given as an impedance boundary condition, leading to a straightforward modification of
the three stipulations listed above. Various techniques for the solution of such boundary
problems have been previously developed. In one such method, proposed by Marcus [11],
the elliptic Helmholtz equation is approximated by a “parabolic” Pad´e (2, 0) approxima-
tion, after which the solutions in regions (1) and (2) are computed by an integral equation
approach and a finite difference method and the two solutions are linked at the boundary
between the two regions. In an example in acoustics, however, Mayfield [10] analyzed the
numerical stability of an analogous hybrid propagation algorithm and determined that even
if the implicit finite-difference propagation method in the interior region is unconditionally
stable, the overall method may become unstable.

Recently, a specialization of the problem defined in this Introduction, based on a
Padé (2, 2) approximation to the Helmholtz operator, has been successfully analyzed [1].
While the solution presented in this reference is restricted to cases for which certain inverse
Laplace transforms can be inverted analytically, such a step is absent from our present
method. We extend the methods described above as follows:

• We allow an arbitrary high-order Pad´e approximation of the square-root operator on
the entire transversal axes.
• We do not need to introduce a Green’s function represenation for the choosen Pad´e

approximation.
• We do not need to compute an explicit inverse Laplace transform.
• Consequentely, we do not need an analytic pretreatment.
• We prove unconditional stability of the algorithm.

As a result, we are able to develop efficient numerical techniques even for high Pad´e
orders. Since our numerical implementation relies on non-trivial data structures, explicit
pseudo-codes will also be presented below. It should be noted that this presentation is
restricted to uniform step sizes in the propagation direction, so that we can apply the
simplified shift-operator technique introduced in [15]. Similar formulas can, however, be
derived for non-equidistant step sizes using the more direct procedure of [14] or the algebraic
approach in [13], but the analysis and the resulting formulas would be far more complicated.

2. WIDE-ANGLE EQUATIONS

We first summarize the standard wide-angle approximation to the Helmholtz equation
(1) that will form the basis for our subsequent considerations. The first step in this analysis
is to define a new field variablẽu(x, z) := u(x, z) exp(−ik0z). The reference wavenumber
k0 is chosen to effectively minimize the mean phase velocity of the wavevector components
of ũ(x, z) in thez-direction. The resulting spectrally shifted Helmholtz equation, where we
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TABLE I

Padé Coefficients

(2, 0) (2, 2) (4, 2) (4, 4)

j 0 2 0 2 0 2 4 0 2 4
c′j 1 1/2 1 3/4 1 1 1/8 1 5/4 5/16
cj 1 1 1/4 1 1/2 1 3/4 1/16

drop the tilde onu(x, z) for notational simplicity, is(
∂2

z + 2ik0∂z+ ∂2
x + k2− k2

0

)
u(x, z) = 0. (4)

Formally factorizing the above equation in analogy with (2) yields the following one-way
equation after the transformationsz := z · k0 andx := x · k0:

∂zu = −i (1−
√

1+ X2)u, with X2 := k2− k2
0

k2
0

+ ∂2
x . (5)

Sincek = const in the exterior domain, rational approximations of the form

√
1+ X2 ' c′0+ c′2X2+ · · · + c′2mX2m

c0+ c2X2+ · · · + c2n X2n
(6)

can be applied to the square-root operator. The most accurate of these is generally obtained
for m= n or for m= n+ 1; see [16]. We will derive a general procedure for deriving
transparent boundary conditions that can be applied to all such approximations in succeeding
sections. However, to simplify our numerical algorithm, we will consider explicitly Pad´e-
type approximations of order(2m, 2n). This yields an interpolation errorO(X2m+2n+2) for
X→ 0.

For the simple Pad´e approximation of (6), the coefficientsc′2i and c2 j , i = 0, . . . ,m,
j = 0, . . . ,n, can be obtained either by an explicit factorization [3] or by the Newman pro-
cedure [8]. The latter technique, on which our computer codes are based, can be extended to
wide-angle equations other than those based on Pad´e-approximations. Some of the resulting
coefficients can be found in Table I.

3. LONGITUDINAL DISCRETIZATION

The implicit midpoint discretization of (5) results in

ui (x)− ui−1(x)

1z
= −i (1−

√
1+ X2)

ui (x)+ ui−1(x)

2
. (7)

Hereui (x), 0< i ≤ n, denotesu(x, z0+ i1z), wherez0 is the initial value of the lon-
gitudinal distance and1z is the propagation step length. Note that here the subscripti
denotes the longitudinal step number. The superscripti denotes thei th integer power of the
corresponding quantity, while algebraic factors ofi refer to the imaginary unit.
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From (7), we immediately obtain the discrete evolution equation(
1+ i1z

2
(1−

√
1+ X2)

)
ui (x) =

(
1− i1z

2
(1−

√
1+ X2)

)
ui−1(x) .

After replacing the square-root operator by its rational approximant, we obtain an equation
of the form

ui (x) = P′(X2)

P(X2)
ui−1(x) . (8)

HereP(X2) andP′(X2) are the following polynomials of degreem in the variableX2:

P′(X2) =
(

1− i
1z

2

)
C(X2)+ i

1z

2
C′(X2)

P(X2) =
(

1+ i
1z

2

)
C(X2)− i

1z

2
C′(X2) .

The quantitiesC′(X2) andC(X2) are themselves polynomials defined byC′(X2) = c′0+
c′2X2+ · · · + c′2mX2m andC(X2) = c0+ c2X2+ · · · + c2n X2n; see (6) and Table I. Ap-
plying a complex root finder yields

P′(X2) = c′
k∏

j=1

(1− a′j X
2) and P(X2) = c

k∏
j=1

(1− aj X
2), (9)

wherec and c′ are constants. ChoosingX2 = 0, it follows that P′(0)/P(0) = c′/c and
comparing with (7) showsc′/c = 1. Finally, insertingX2 := (k2− k2

0)/k2
0 + ∂2

x leads to
the desired factorization.

4. DISCRETE EVOLUTION EQUATION

From the rational approximation (8) and the factorization (9), we obtain the longitudinally
discretized form of the evolution equation,

ui (x) =
(

1− a′k∂
2
x

1− ak∂2
x

)
· · ·
(

1− a′2∂
2
x

1− a2∂2
x

)(
1− a′1∂

2
x

1− a1∂2
x

)
ui−1(x) , (10)

which is the exact counterpart of the continuous evolution equation (3). In terms of the
intermediate functionsg(1)i (x), . . . , g(k−1)

i (x) given by

g(1)i (x) =
(

1− a′1∂
2
x

1− a1∂2
x

)
ui−1(x)

g(2)i (x) =
(

1− a′2∂
2
x

1− a2∂2
x

)
g(1)i (x)

...

g(k−1)
i (x) =

(
1− a′k−1∂

2
x

1− ak−1∂2
x

)
g(k−2)

i (x)

ui (x) =
(

1− a′k∂
2
x

1− ak∂2
x

)
g(k−1)

i (x) ,
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the factorized discrete evolution problem (10) of order 2k can be recast into the following
system ofk second-order differential equations:(

1− a1∂
2
x

)
g(1)i (x)− (1− a′1∂

2
x

)
ui−1(x) = 0(

1− a2∂
2
x

)
g(2)i (x)− (1− a′2∂

2
x

)
g(1)i (x) = 0

... (11)(
1− ak−1∂

2
x

)
g(k−1)

i (x)− (1− a′k−1∂
2
x

)
g(k−2)

i (x) = 0(
1− ak∂

2
x

)
ui (x)−

(
1− a′k∂

2
x

)
g(k−1)

i (x) = 0 .

This sequence of equations may be rewritten conveniently in the matrix form



1
. . .

. . .

−1 1
−1 1

. . .
. . .

+


−a1∂
2
x

. . .
. . .

a′k∂
2
x −ak∂

2
x

a′1∂
2
x −a1∂

2
x

. . .
. . .







g(1)1
...

u1

g(1)2
...


= 0.

(12)

The unknown functions are then assembled into the following sequence:

G(x) =

g(1)1 , . . . , g(k−1)
1 , u1, . . . , g

(1)
i , . . . , g(k−1)

i , ui︸ ︷︷ ︸
i th macro step

, . . .

 .
Here the quantities distinguished by a subscripti are evaluated during thei th physical

propagation step, while thek− 1 intermediate partial steps that compose each physical step
and are associated with different terms in the Pad´e approximation are distinguished by their
superscripts.

Given an initial condition with respect tox, at some fixed point, sayx+, we can solve
the system (12) equation by equation. Thus at stepi the functionui−1(x) maps overk− 1
intermediate functionsg( j )

i (x) to the solutionui (x). Hence we consider a mapping

ui−1(x) 7→ g(1)i (x) 7→ g(2)i (x) 7→ · · · 7→ g(k−1)
i (x) 7→ ui (x)︸ ︷︷ ︸

gi (x):=
(

g(1)i (x),g(2)i (x),..., g(k−1)
i (x),ui (x)

) (13)

ui−1(x) 7→ gi (x) , (14)

which depends on the initial conditions (with respect tox). In the lowest order case,k = 1,
the vectorgi (x) consists of the single functionui (x).

To write (11) or (12) as a simple matrix equation with finite dimensions, we introduce
the discrete shift-operatorsk with the property thatskui (x) = ui−1(x). This operator shifts
our sequence by one physical step, corresponding tok terms inG. That is, ifs is the shift
operator which shifts the sequence inG by one place, as introduced in Definition A.2, we
havesk = sk. Since in the following case the index shift occurs only in powers ofsk, we
redefines := sk to yield the more intuitive formulation denoted bysui (x) = ui−1(x).
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Introducing the notatioṅg for ∂xg and eliminatingui−1(x) in (11) in terms ofui (x) then
yields (

E(s)+ A(s)∂2
x

)
gi (x) = 0, for all macro stepsi ≥ 1, (15)

which must be solved subject to the boundary conditions

ġi,+ = B+(s)gi,+ and ġi,− = B−(s)gi,−. (16)

A comparison with the infinite-dimensional system (12) demonstrates that thek× k matri-
cesE(s) andA(s) and thek-element vectorsgi (x), gi,±, andġi,± are given by

E(s) =


1 −s
−1 1

. . .

−1 1
−1 1

 , A(s) =


−a1 sa′1
a′2 −a2

. . .

a′k−1 −ak−1

a′k −ak

,

gi (x) =



g(1)i (x)

g(2)i (x)
...

g(k−1)
i (x)

ui (x)


, gi,± =



g(1)i

g(2)i
...

g(k−1)
i
ui


x=x±

, ġi,± =



ġ(1)i

ġ(2)i
...

ġ(k−1)
i

u̇i


x=x±

.

We refer toE(s) andA(s) as operators, as they depend explicitly on the shift operator.
Further, they may be represented asD(s) =∑i

j=0 D j sj , where thek× k matricesD j , j =
0, . . . , i , are complex. We will label operators of this general type as convolution operators
or convolution matrices; the properties of such matrices that are required to derive our
subsequent algorithms are collected in the Appendix. The Dirichlet-to-Neumann operators
B±(s) that implement the desired boundary conditions must be constructed such that the
asymptotic boundary condition lim|x|→∞ ui (x) = 0 is fulfilled for all propagation steps.
We will show later by construction that these boundary operators are also of convolution
type.

5. DISCRETE TRANSPARENT BOUNDARY CONDITIONS

We now present a derivation of transparent boundary conditions for general wide-angle
methods. To simplify the discussion, we considergi (x) only in the right exterior domain,
x ≥ x+, and further shift the position of the right boundaryx+ to the origin according to
x 7→ x + x0 and omit the± subscript. Also, we designate the boundary valuegi,+ by gi,0.
All our results of course apply equally to the left exterior domain.

Consider (15) as an initial value problem in the right exterior domain with data given on
the shifted boundaryx+ = 0. Our objective is to construct an operator with the property
that the corresponding exterior solution decays asymptotically for any given Dirichlet data
gi,0. To do this, we construct the Laplace transformĝi (p) := ∫∞0 exp(−px) gi (x) dx, p ∈ C
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with<(p) > const, of the exterior solution vectorgi (x). In the exterior domain, the Laplace
transform of the equation system (15) is

(E(s)+ p2A(s))ĝi (p) = A(s)(pgi,0+ ġi,0).

The operatorA(s) is invertible, sinceaj 6= 0, j = 1, . . . , k (cf. Section 3 and Proposi-
tion A.1). Therefore we can write equivalently

(p2I − C2(s))ĝi (p) = pgi,0+ ġi,0 ,

where thek× k matrix C2(s) := −A(s)−1E(s) is of convolution type andI is thek× k
identity matrix. If we assume for the moment that we can obtain the square roots,±C(s),
of the matrixC2(s), we have(p2I − C2(s)) = (pI + C(s)) (pI − C(s)), sinceC(s) and
I commute. Thus imposing the ansatzġi,0 = Bgi,0, see (15), and the boundary operator
B(s) = −C(s) leads to a special solution of the matrix equation, namely

ĝi (p) = (pI + C(s))−1 gi,0 subject to boundary conditionsġi,0 = B(s)gi,0. (17)

To derive the nonlocal boundary conditions, which is equivalent to finding the boundary
operatorB(s), we apply the same procedure as in [14] or [15]. That is, we construct the matrix
C(s) such that all polespj , j = 1, . . . , k, of (pI + C(s))−1 are located in the right half
of the complex plane, i.e.,<pj > 0, j = 1, . . . , k. This ensures that the exterior solution
decays appropriately asx→±∞. The operator(pI + C(s))−1 possesses a pole inp if
the matrix (pI + C(s)|s=0)

−1 possesses a pole inp (cf. the properties of operators of
convolution type given in the Appendix.)

The square root ofC2(s) := −A−1(s)E(s) is obtained by decomposing the matricesA(s)
andE(s) into its components with respect tos. The first of these is independent of the shift
operators, namely,A0 := A|s=0 andE0 := E|s=0, while the second iss dependent. We
thus haveA = A0+ sA1 andE = E0+ sE1 with

A1 :=


0 · · · 0 a′1

0

0
...

0

 and E1 :=


0 · · · 0 −1

0

0
...

0

 .

For convenience, we define new matrices:

Ã1 := A−1
0 A1, Ẽ0 := A−1

0 E0, Ẽ1 := A−1
0 E1 .

From the previous definitions together with the ansatzC(s) =∑i−1
j=0 C j sj , whereC j ∈

Ck×k, 0≤ j ≤ i , we observe that we must find matricesC j such that

(I + Ã1s)(C0+ C1s+ C2s2+ · · ·)(C0+ C1s+ C2s2+ · · ·) = −Ẽ0− Ẽ1s. (18)

It is a property of matrices of convolution type that the expression (18) can be computed
elementwise and further ordered with respect to equal powers ofs such that the resulting
operator is of convolution type. That is, we are allowed to reorder, for example,C1sC0 to
C1C0s. (This property, of course, is not generally true.) Now, as is evident by comparing



704 SCHMIDT, FRIESE, AND YEVICK

coefficients, to solve (18) we must first findC0 such thatC2
0 = −Ẽ0. Because the matrix

Ẽ0 is a quotient of two lower triangular matrices, the matrixC0 is also lower triangular.
Further, the diagonal entriesC0 can be chosen such that<(C) j j > 0, j = 1, . . . , k, using
the Algorithm 1. Hence all poles corresponding toC0, with C0 constructed according to
Algorithm 1, are located in the right half of the complex plane.

ALGORITHM 1. CalculateC0 =
√
−Ẽ0.

for i = 1 tok do
cii =

√
−Ẽ0,i i

if i > 1 then
for j = i − 1 to 1do

ci j = (−Ẽ0,i j −
∑i−1

m= j+1 cimcmj)/(cii + cj j )

end for
end if

end for

Remark. SinceC0 = C(s)ats= 0, the conditionB = −C0 is the desired boundary con-
dition for the first step; that is, for the firstk− 1 intermediate solutions,g(1)1 (x), . . . , g(k−1)

1

(x), and also for the solutionu1(x) after the first step. By construction, all eigenvalues of the
square root have a positive real part. Therefore both the intermediate solutions andu1(x)
decay asymptotically in the external domain.

Subsequently the sequenceC1,C2, . . . ,Cn−1 for the following n propagation steps is
obtained by comparing coefficients of equal powers ofs in (18). The corresponding pseu-
docode is given in Algorithm 2, and consists mainly of solutions of Sylvester equations.
From the structure of the algorithm we observe that ifC0 is computed, the entire sequence
is uniquely determined.

ALGORITHM 2. Recursive calculation ofC j , j = 1, . . . ,n− 1.

Z := −(E1+ A1C2
0)

ComputeC1 from C1C0+ C0C1 = Z
for k = 2 ton− 1 do

Z ⇐ −A1Z
ComputeCk from CkC0+ C0Ck = Z −∑k−1

j=1 C j Ck− j

end for

Finally, the nonlocal boundary condition at every step 0< i ≤ n is obtained fromC j ,

j = 0, . . . , n− 1, by employing the definitionsB = −C and

ġi,0 = B(s)gi,0

= (B0+ sB1+ · · · + si−1Bi−1)gi,0

= B0gi,0+ B1gi−1,0+ · · · + Bi−1g1,0. (19)

Equation (19) provides the algorithmic basis for constructing nonlocal boundary conditions
for any wide-angle approximation and discrete propagation method, as different propaga-
tion methods can be distinguished simply through the values of the defining coefficients
a′1, . . . ,a

′
k anda1, . . . ,ak. Because the operatorB(s) possesses a Taylor representation in

s, its action can be represented by matrix–vector multiplications of the Taylor coefficients
B j with boundary values describing the history of the evolution process. In our numerical
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implementation we order the boundary vectorsgi,0 from smaller to larger step numbers and
introduce a composite boundary vectorg0 = (gT

1,0, . . . gT
i−1,0, g

T
i,0)

T . Similarly, we generate
the composite boundary matrices

B = (Bi−1,Bi−2, . . . B0) , 1≤ i ≤ n (20)

C = −B, (21)

in place of the boundary operatorB(s), after which the normal derivativėgi,0 from system
(19) is computed through a matrix–vector multiplication. This procedure for implement-
ing the discrete boundary condition in terms of a composite matrixC is summarized in
Algorithm 5.

6. FINITE-ELEMENT DISCRETIZATION

From the representation (11), we will now generate a finite-element discretization on the
interior domain. For illustrative purposes, consider the first equation of the system (11) at
stepi , 0< i ≤ n. Multiplying this equation by a trial functionv ∈ H1(Ä), Ä = (x−,x+),
integrating overÄ, and integrating by parts yields(

v, g(1)i

)+ (∂xv,a1∂xg(1)i

)− (v̄a1∂xg(1)i

)∣∣x+
x−= (v, ui−1)+ (∂xv,a

′
1∂xui−1)− (v̄a′1∂xui−1)|x+x− . (22)

The variational problem corresponding to this equation is therefore to find a function
g(1)i ∈ H1(Ä) such that (22) holds for anyv ∈ H1(Ä). The other equations of the sys-
tem (11) can be reformulated similarly. The resulting system is then discretized by re-
placing the infinite-dimensional function spaceH1(Ä) by a finite-dimensional spaceVh =
span{v1, v2, . . . , vN} with Vh ⊂ H1(Ä). Hence the corresponding discrete problem is to
determine a discrete approximationg(1)h,i of g(1)i with g(1)h,i ∈ Vh such that for allvh ∈ Vh(

vh, g
(1)
h,i

)+ (∂xvh,a1∂xg(1)h,i

)− (v̄ha1∂xg(1)h,i

)∣∣x+
x−= (vh, uh,i−1)+ (∂xvh,a

′
1∂xuh,i−1)− (v̄ha′1∂xuh,i−1)|x+x− . (23)

To solve the above system, we employ standard linearC0-elements. Letv1 andvN denote
the leftmost and the rightmost finite elements, respectively. A compact notation for (23)
results if we setv1|x− = 1, vN |x+ = 1, define the vectorsb(1)i , b

′(1)
i ∈ CN with N = dim Vh

by

b(1)i =



(−a1∂xg(1)h,i

)∣∣
x=x−

0
...

0(
a1∂xg(1)h,i

)∣∣
x=x+

 and b′(1)i =


(−a′1∂xuh,i−1)|x=x−

0
...

0
(a′1∂xuh,i−1)|x=x+

 ,

and introduce the mass and stiffness matricesM ∈ RN×N, A1,A′1 ∈ CN×N in standard
fashion as(M)i, j = (vh,i , vh, j ) and(A)i, j = (∂xvh,i ,a1∂xvh, j ). Defining as well the vectors
g(1)i = (g(1)h,i,1, . . . , g

(1)
h,i,N)

T ∈ CN andui−1 = (uh,i−1,1, . . . ,uh,i−1,N)
T ∈ CN , which are the
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discrete counterparts of the continuous functionsg(1)i (x) andui (x), we have

(M + A1) g(1)i − b(1)i = (M + A′1)ui−1− b′(1)i . (24)

If we know the solutionui−1 in the interior domain together with its normal derivative on the
boundary and the normal derivative ofg(1)i , we can obtain the unknown intermediate vector
g(1)i . Repeating this procedure for each of the equations of (11), we generate the following
block matrix equation in terms of the matrices and vectors introduced in the preceding
paragraph:


M + A1

M + A2

. . .

M + Ak




g(1)i

g(2)i
...

ui

−


b(1)i

b(2)i
...

b(k)i



=


M + A′1

M + A′2
. . .

M + A′k




ui−1

g(1)i
...

g(k−1)
i

−


b′(1)i

b′(2)i
...

b′(k)i

 . (25)

To solve the system (25), the vectorsb( j )
i , b′( j )

i , j = 1, . . . , k, must be constructed in
accordance with the boundary conditions. The relationship between the discretized evolution
equation (25) and the boundary condition (19) is determined by decomposing the boundary
condition at each boundary according tob( j )

i = b( j )
i,− + b( j )

i,+ with

b( j )
i,− =



(−aj ∂xg( j )
i,h

)∣∣
x=x−

0
...

0
0

 and b( j )
i,+ =


0
0
...

0(
aj ∂xg( j )

i,h

)∣∣
x=x+

 , b( j )
i,± ∈ CN .

Performing the same decomposition for each vectorb′( j )
i and assembling all nonzero entries

of the vectorsb( j )
i,±, b′( j )

i,± , j = 1, . . . , k, into the four vectorsbi,±, b′i,± ∈ Ck, we arrive at

bi,± =



(±a1∂xg(1)i,h

)∣∣
x=x±(±a2∂xg(2)i,h

)∣∣
x=x±

...(±ak−1∂xg(k−1)
i,h

)∣∣
x=x±

(±ak∂xui )
∣∣
x=x±


and b′i,± =



±(a′1∂xui−1)
∣∣
x=x±

±(a′2∂xg(1)i,h

)∣∣
x=x±

...

±(a′k−1∂xg(k−2)
i,h

)∣∣
x=x±

±(a′k∂xg(k−1)
i,h

)∣∣
x=x±


. (26)
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We now derive an equation relating the vectorsbi,± andb′i,± to the boundary condition (19).
For bi−1,+, we have from (26) and (19)

bi,+ = diag(a1, . . . ,ak)ġ0,i

= diag(a1, . . . ,ak)B(s)g0,i

= diag(a1, . . . ,ak)(B0+ B1s+ B2s2+ · · · + Bi−1si−1)g0,i .

All of the expressionsB j sj gn(0) = B j gn− j (0) above with j = 1, . . . ,n− 1 can be im-
mediately evaluated based on the observation that the shift operators decreases the index
of B j by unity. Further, since the matrixB0 is a lower triangular matrix, we can arrange
the algorithm so that the boundary condition at the current step depends only on boundary
values in the previous steps. To this end we decomposeb± as

b± = Bd,±g0,i + Br ,±gi with
(27)

Bd,± := ±diag(a1, . . . ,ak)|x=x± diag(B0,±)

and

Br ,±(s) := ±diag(a1, . . . ,ak)|x=x±

· (B0− diag(B0)+ sB1+ · · · + si−1Bi−1)|x=x± , (28)

where the matrices diag(B0,±) contain only the main diagonals ofB0,±. The diagonal
matricesBd,± are then inserted into the matrix of the final system which yields updated
matricesA j satisfying

A j = A j −

Bd,−( j, j )

0
Bd,+( j, j )

 , j = 1, . . . , k. (29)

The reduced matrixBr ,±, which is a lower triangular matrix with a zero diagonal, couples
only previously determined boundary values and is therefore placed on the right-hand side
of the evolution equation (cf. Algorithm 5.).

A corresponding expression forb′+ results from the observation that the vectorgi is
ordered as(g(1)i , g(2)i , . . . g(k−1)

i , ui )
T , reflecting the algebraic structure of the boundary

condition (19). The discrete evolution system (25), however, requires the alternate ordering
(26) (ui−1,g

(1)
i , g(2)i , . . . g(k−1)

i )T . Thus rearranging the columns and rows of the operator
B appropriately, we obtain a condition of the form

∂ui−1
...

∂g(k−1)
i

 = (B′0+ B′1s+ · · · + B1i−1si−1)


ui−1
...

g(k−1)
i

 ,
with the operatorB′(s) := B′0+ B′1s+ · · · + B′i−1si−1.

In the first step of this transformation, which is illustrated in Fig. 1, we remove the
last row and the last column of the composite boundary matrixB = −C to obtain the



708 SCHMIDT, FRIESE, AND YEVICK

FIG. 1. Construction of the boundary operatorB′ from the boundary operatorB.

reduced matrix shown in Fig. 1b. We then place the former last row ofB at the top of
the reduced matrix, after shifting the row to the left and adjusting it to the dimension of the
reduced matrix, as illustrated in Fig. 1c. Finally, the resulting matrix is multiplied with
the diagonal matrix diag(a′1, . . . a′k) according to (26). The pseudo-code for these opera-
tions is given in Algorithm 3.

Remark. To evolve the field overn propagation steps, we must first initialize the two
boundary operatorsB+ and B− with dimensionsk× (kn), acting on the right and left
boundary, respectively. At the end of the simulation we will possess two vectorsg+ andg−
of dimensionsnk+ 1 that contain the required boundary values.

ALGORITHM 3. Computation of the operatorB′ (see Fig. 1).

1. ComputeB′ := −C(1 : k− 1, 1 : nk− 1)
2. Computeb′ := −[C(k, k+ 1 : nk), 0, 0, . . . 0︸ ︷︷ ︸

k−1

]

3. ComputeB′ ⇐ diag(a′1, . . . a′k)[
0 b′
0 B′ ]

The initialization of the propagation algorithm, which includes the computation of the
standard finite element matrices, the updating of these matrices (which corresponds to
incorporating the boundary conditions), and the computation of the boundary matricesB±
are summarized in Algorithm 4:

ALGORITHM 4. Computation of the finite element matricesA j , M and the boundary
matricesB±.

ComputeC0,± {acc. to Alg. 1}
ComputeC j,±, j = 1 : n− 1 {acc. to Alg. 2}
ComputeC± := [Cn−1,Cn−2, . . . C0]± {acc. to Eq. (21)}
ComputeA j , j = 1, . . . , k andM {acc. to Eq. (23) and Eq. (24)}
ComputeB′± {acc. to Alg. 3}
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ComputeBd {acc. to Eq. (27)}
UpdateA j , j = 1 : k usingBd {acc. to Eq. (29)}
ComputeB± := −diag(a1, . . . ,ak)±[Cn−1,

Cn−2, . . . C0− diag(C0)]± {acc. to Eq. (28)}
B± ⇐ [0,B±(:, 1 : nk− 1)]
B± := [Bn−1,Bn−2, . . . B0] ⇐ B± − B′±

The structure and the numerical details of the resulting propagation algorithm is finally
described in Algorithm 5.

ALGORITHM 5. Propagation algorithm.

g := u0 {set the initial values}
g− := (g(1)), g+ := (g(N)) {save the boundary values}
for i = 1 ton do {propagaten steps}

for j = 1 tok do {solvek intermediate problems}
b = (M + A′j )g
c− = B−( j, (n− i )k+ 1 : (n− 1)k+ j )g−
c+ = B+( j, (n− i )k+ 1 : (n− 1)k+ j )g+

b⇐ b+
(

c−
0
c+

)
Computeg from (M + A j )g= b
g− ⇐ (g−, g(1))T , g+ ⇐ (g+, g(N))T {save the boundary values}

end for
ui := g {solution of thei th step}

end for

7. STABILITY

The stability of the wide-angle transparent boundary conditions can be verified by a
natural extension of our earlier analysis for the Schr¨odinger-type Pad´e (2, 0) approximant
[15]. Assume that the algorithm is implemented with exact arithmetic and consider the
representation of the exterior solution given by (17), namely,

ĝi (p) = (pI + C(s))−1 gi,0, with C(s) = C0+ C1s+ · · · + Ci−1si−1,

in which by construction (Algorithm 1)< (diag(C0)) > 0. The operatorpI + C(s) is of
convolution type. Its inverse exists and is again of convolution type(pI + C(s))−1 = D0+
D1s+ · · ·, as long as det(pI + C0) 6= 0. Further, it holdsC−1

0 = D0. Hence the zeros of
det(pI + C0)are exactly the poles of the solution vectorĝi (p). Consequently,gi (x) consists
only of exponentially decaying functions.

We now prove that our boundary condition conserves the L2(−∞,∞) norm over the
infinite domain in which we employ the continuous form of the L2 norm within the right and
left exterior domainsÄ− = (−∞, x−) andÄ+ = (x+,∞), respectively, and the discrete
L2 norm onÄ = (x−, x+). The unconditional stability of the propagation algorithm follows
directly from this conservation law.

We consider first the discrete variational equation (23), and abbreviateg(1)h,i by g and
uh,i−1 by u anda1,a′1 by a,a′. Accordingly, (23) reads

(vh, g)+ (∂xvh,a∂xg)− (v̄ha∂xg)|x+x− = (vh, u)+ (∂xvh,a
′∂xu)− (v̄ha′∂xu)|x+x− .
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We must compute the functiong from its predecessoru. If we regard the special choice
vh = g andvh = u, we obtain the equation system

(g, g)+ (∂xg,a∂xg)− (ḡa∂xg)|x+x− = (g, u)+ (∂xg,a′∂xu)− (ḡa′∂xu)|x+x−
(u, g)+ (∂xu,a∂xg)− (ūa∂xg)|x+x− = (u, u)+ (∂xu,a′∂xu)− (ūa′∂xu)|x+x− .

We compute the conjugate complex of the second equation

(g, u)+ (a∂xg, ∂xu)− (ua∂xg)|x+x− = (u, u)+ (a′∂xu, ∂xu)− (ua′∂xu)|x+x− .

If a′ anda are complex conjugates with=(a) =/ 0, which is the essential requirement that
ensures stability, the sum of the last and the first equations of the above system yields

(g, g)+ (∂xg,a∂xg)− (ḡa∂xg+ ua∂xg)|x+x−
= (u, u)+ (a′∂xu, ∂xu)− (ḡa′∂xu+ ua′∂xu)|x+x− ,

The same procedure applies to the two exterior domains. For the right exterior domain

(g, g)+ + (∂xg,a∂xg)+ − (ḡa∂xg+ ua∂xg)|∞x+
= (u, u)+ + (a′∂xu, ∂xu)+ − (ḡa′∂xu+ ua′∂xu)|∞x+ ,

with an analogous result for the left exterior domain. Summing all three contributions and
noting that the terms at infinity vanish while the normal derivatives atx± cancel, we obtain

(g, g)− + (g, g)+ (g, g)+ + (∂xg,a∂xg)− + (∂xg,a∂xg)+ (∂xg,a∂xg)+

= (u, u)− + (u, u)+ (u, u)+ + (a′∂xu, ∂xu)− + (a′∂xu, ∂xu)+ (a′∂xu, ∂xu)+.

The imaginary part of the above equation yields

=(a)[(∂xg, ∂xg)− + (∂xg, ∂xg)+ (∂xg, ∂xg)+]

= −=(a′)[(∂xu, ∂xu)− + (∂xu, ∂xu)+ (∂xu, ∂xu)+].

Sincea anda′ are complex conjugates with=(a) =/ 0, we obtain the conservation law

(∂xg, ∂xg)− + (∂xg, ∂xg)+ (∂xg, ∂xg)+ = (∂xu, ∂xu)− + (∂xu, ∂xu)+ (∂xu, ∂xu)+

from which we conclude that

(g, g)− + (g, g)+ (g, g)+ = (u, u)− + (u, u)+ (u, u)+.

Since the globalL2 norm is conserved for every intermediate step, it is conserved over the
entire discrete evolution. We have proven that similar considerations apply to the energy
norm. Since the initial datau0 is required to be compactly supported on the interior domain,
we have additionally that

‖gi ‖L2,i≥0 ≤ ‖u0‖L2,

in which the norm is restricted to the interior domain, establishing the uniqueness of the
discrete solution.
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8. NUMERICAL EXPERIMENTS

We now verify our theoretical considerations by computing the reflection from the com-
putational window boundary of a Gaussian input beam, propagating in air, described by

u(x, 0) = u0(x) = const exp(−(x/10)2) exp(ik0x sinφ).

We setk(x) = k0 = 2π/λ, where the free space wavelengthλ = 1.55µm, the propagation
step size1z= 0.4 µm, andφ = π/4. In our calculations which are meant to duplicate
the corresponding numerical experiments in [6], the computational domains are either
Ä = (−50, 50)× (0, 400) µm2 or Ä = (−50, 50)× (0, 100) µm2, while the transverse
step sizes1x vary between 0.01µm≤1x ≤ 0.2µm. We consider first the intrinsic error
associated with application of the implicit midpoint rule to plane wave solutions of the
Helmholtz equation. Recall that for the exact one-way Helmholtz propagator

u(1z) = u(0) exp(−i1zk0

√
1− sin2 φ),

for which the implicit midpoint rule yields

uIMR(1z) = uIMR(0)
1− i1zk0/2(1−

√
1− sin2 φ)

1+ i1zk0/2(1−
√

1− sin2 φ)
.

In this expressionφ,−π/2< φ < π/2, is the angle between the propagation direction and
thez-axis. This yields a resulting phase error log(u(1z))− log(uIMR(1z))which we com-
pare in Fig. 2 with that obtained by applying the Pad´e (2, 0) (Schr¨odinger type) approxima-
tion to the exact propagator. While at Pad´e order 2 the phase error of the Pad´e approximation
is far greater, the opposite is true for the Pad´e (8, 8) approximant, as evident from Fig. 3.

Next we display in Fig. 4 the spectral norms of the matricesBi as a function of the number
of propagation steps for the boundary conditions associated with both the (2, 0) and (8, 8)
Padé approximants. Here the matricesBi are defined and computed as in Algorithm 4. Both
approximations decay asymptotically as‖Bi ‖2 = consti−3/2, independent of the order of
the approximation. Note that every second coefficient of the Pad´e (2, 0) approximation
vanishes.

We now propagate the field fromz= 0 to z= 400µm with the (8, 8) Pad´e procedure.
Here the transverse grid spacing is1x = 0.2µm while the computational domain isÄ =
(−50, 50)× (0, 400) µm2. The contour lines for the logarithmic amplitude over the first
100µm of propagation are shown in Fig. 5. While the incident field propagates as expected
along theθ = π/4 direction, residual reflections are generated by the finite transverse
discretization error.

To underline the wide-angle property of the Pad´e (8, 8) approximant, we first note that
employing the (2, 0) in place of the (8, 8) Pad´e approximation for the square root operator
leads to considerable phase errors, as evident from Fig. 6.

We perform a numerical experiment in the presence of a second Gaussian beam that
describes an angle of+π/4 with respect to thez-axis. Figure 7 demonstrates the wide-
angle nature of the underlying propagation method.

The influence of the discretization error with respect to the transverse step length1x
is evident if we repeat our previous (8, 8) Pad´e simulation (Fig. 5 with1x = 0.01µm, cf.
Fig. 8). The boundary reflection, which vanishes in the1x→ 0 limit is indeed significantly
reduced. The actual dependence of the reflection from the discretization error can be deduced
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FIG. 2. The phase error associated with the exact implicit midpoint discretization (solid line) compared to
that of the corresponding Pad´e (2, 0) approximant (dashed line).

FIG. 3. As in Fig. 2, but for a (8, 8) Pad´e approximant.
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FIG. 4. Spectral norm of the boundary matricesBi as a function of the number of propagation steps.

FIG. 5. Gaussian beam propagation calculated with a (8, 8) Pad´e propagator and1x = 0.2µm. The dashed
line represents the exact propagation angleθ = π/4. The reflected field vanishes as1x→ 0.
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FIG. 6. As in Fig. 5 except for a Pad´e (2, 0) propagator. Note the error in the propagation angle.

FIG. 7. Propagation of two Gaussian beams at a relative angle ofπ/2.
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FIG. 8. As in Fig. 5, but with1x = 0.01µm.

FIG. 9. TheL2(−50, 50) norm‖u‖ as a function of the propagation distance for varying step sizes1x.
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FIG. 10. The discreteL2-norm of the field within the computational window as a function of longitudinal
distance for 0≤ z≤ 400µm for the parameters of Fig. 5.

from Fig. 9 which graphs the discreteL2(−50, 50) norm as a function of propagation
distance for transverse step sizes of 0.2, 0.1, 0.05, 0.025, and 0.01µm. The figure clearly
shows that halving the transverse grid point spacing reduces the norm of the reflected field
by a factor of 4. This behavior is entirely consistent with theO(1x2) discretization error of
the underlying linear finite elements. Finally, to demonstrate the stability of our algorithm
(subject to arithmetic error), we display in Fig. 10,‖u‖ computed over a longer longitudinal
interval 0≤ z≤ 400µm for an (8, 8) Pad´e propagator. The parameters are the same as
in Fig. 5. Clearly the resulting curve, which displays successive plateaus corresponding
to integer number of reflections of the Gaussian beam from the computational window
boundaries is completely free of numerical divergences.

CONCLUSIONS

We have presented the theoretical and algorithmic details required to derive and imple-
ment transparent boundary conditions for arbitrary rational approximations of the one-way
Helmholtz equation in two dimensions. Our approach directly generalizes our earlier work
on Schrödinger-type equations. Additionally, we have proven the unconditional stability
of propagation methods based on our technique that in turn are based on longitudinal
discretization with the implicit midpoint rule. The proof requires only that the rational ap-
proximations to the square-root operator obey the conditionaj = ā′j , j = 1, . . . , k, and
that the finite-element spaceVh of the interior discrete problem is nonadaptive; that is,
it remains unchanged over the entire longitudinal propagation length. Given the general-
ity of our results, we conclude that the associated family of transparent boundary condi-
tions will find considerable application in a wide variety of numerical wave propagation
problems.
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APPENDIX: DISCRETE OPERATIONAL CALCULUS

Here we define an algebra that contains infinite sequences as elements in such a manner
that the operations we need to derive the algorithms of this paper are well defined. LetU
denote the infinite sequence of complex numbers{u0, u1, . . . ,u j , . . .}, |u j | <∞ for all
j ≥ 0, andCs be the set of all such sequences. In particular, ifu j are functions,u j : C → C,
of a complex argumentp, we writeU (p) := {u0(p), u1(p), . . . ,u j (p), . . .}.

DEFINITION A.1. Define the null and unity elements ofCs by

[0] = {0, 0, . . . , } and [1]= {1, 0, 0, . . . , }.

We write 0 and 1 in place of[0] and[1] if no ambiguity results. Addition and multiplication
of two elementsU,V ∈ Cs are then defined by

U + V = {u0+ v0, u1+ v1, . . .} and U V = {g0, g1, . . .} with gj =
j∑

i=0

u j−i vi .

From the above definitions, ifU,V ∈ Cs, thenU + V ∈ Cs andU V ∈ Cs. Further,U V =
VU, U (V W) = (U V)W, andU (V +W) = U V +U W so thatCs is a commutative ring.
By induction, forU,V ∈ Cs the equationU V = 0 implies eitherU = 0 or V = 0 or both.
Accordingly, the ringCs can be extended to a commutative ring of fractions in the sense
of Mikusiński’s operational calculus. This step is however unnecessary for our present
purpose.

We will label certain special elements ofCs with dedicated symbols. (1) The multiplica-
tion operator is[a] := {a, 0, 0, . . .}, a ∈ C. The operation[a] U that multiplies each ele-
ment ofU by a, is for simplicity abbreviatedaU.

DEFINITION A.2. (2) The shift operators is defined bys := {0, 1, 0, 0, . . .}.
By definition,sU = {0, u0, u1, . . . , }, ss= s2 = {0, 0, 1, 0, . . . , } , . . .
Two sequencesU,V ∈ Cs are equal if their elements are equal, i.e.,ui = vi for all i ≥ 0.

An elementwise comparison of sequences will be denoted by(sU)i+1 = (U )i = ui or by
sui+1 = ui , which means thatV := skU impliesv j = 0 for j = 0, . . . , k− 1. We also state
thatU (p) has a complex poleλ if lim p→λ |u j (p)| = ∞ for some j ≥ 0.

DEFINITION A.3. A linear mappingA : Cs→ Cs is defined through the infinite matrices
A = (ai j )i, j=0,...,∞, ai j ∈ C that mapU into V , U 7→ V = AU through a matrix–vector
multiplicationVi =

∑i
j=0 ai j U j . We denote the set of all of such matrices byL .

In our application, equations between sequences appear in the form


A
A

A
. . .

+


B
B

B
. . .

 sk

U = V , (A.1)

whereA andB are lower triangular, complexk× k matrices. Each row of this equation
corresponds to one full propagation step (also termed a physical step) that consists ofk
intermediate or partial steps, wherek is the order of the underlying Pad´e approximation.
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Accordingly, we separate the sequencesU andV into subsequences of lengthsk and write
these as column vectors. In other words, motivated by the matrix form of the underlying
equations, we composeU = {uT

0 , u
T
1 , . . .} andV = {vT

0 , v
T
1 , . . .} with u j , v j ∈ Ck. We can

now replace (A.1) by the shorter form

(A + Bsk)u j = v j , j ≥ 0 . (A.2)

The second important matrix type, appearing in this paper as lower triangular blocks is
matrices ofconvolutiontype 

B0

B1 B0

B2 B1 B0

...
...

...
. . .

 . (A.3)

The termsB j , j ≥ 0, arek× k complex matrices. In the special casek = 1 we assign the
sequenceB = {B0,B1,B2, . . .} to each matrixB of convolution type withB ∈ Cs such that
B U = BU for all U ∈ Cs. A typical mappingU 7→ V within our factorization procedure
possesses the form


A

A
A

. . .

+


B0

B1 B0

B2 B1 B0

...
...

...
. . .


U = V. (A.4)

In the above equation,A andB0 arek× k lower triangular complex matrices andB j , j ≥ 1,
are general complexk× k matrices. In our notation, thej th row of the above equation for
( j ≥ 0) reads (

A +
j∑

i=0

Bi s
ik

)
u j = v j , j ≥ 0 , (A.5)

which we further abbreviate as(A + B(s)) u j = v j with B(s) :=∑ j
i=0 Bi sik . Equations

of this type that are formulated in terms of the shift operator will accordingly be labled
operator equations.

The inverse of the operator appearing in brackets on the left-hand side of (A.4) possesses
a pole if det(A − B0) = 0. Since (A.4) is equivalent to the operator equation (A.5), the
operator equation (A.2) possesses a pole if det(A − B0) = 0.

The following properties of matrices of convolution type are important to our subsequent
derivations. They may be proved by direct computation.

Consider operatorsB(s) of convolution type with

B(s) = B0+
j∑

i=1

Bi s
ik, Bi ∈ Ck×k . (A.6)

Then
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PROPOSITIONA.1. (i) The product of two infinite matrices of convolution type is also of
convolution type.

If additionallyB0 is invertible,
(ii) The inverseB−1(s) of the operatorB(s) exists andB−1(s) ∈ L.
(iii) B−1(s) is in convolution form.
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